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Abstract
A wide range of topics in the area of hypervirial perturbation theory (HVPT)
is discussed. It is shown that with the use of a few simple procedures HVPT is
capable of high accuracy for many problems; results from many previous works
in the literature are found to be improvable by the careful use of HVPT with
appropriate choice of the unperturbed potential and of the origin at which the
energy expansion is carried out. Two multi-well problems from the literature
are analysed in detail to show the value of a combination of HVPT and finite-
difference methods.

PACS numbers: 03.65.Sq, 31.15.Md

1. Introduction

After the recent publication of a hypervirial method for some Penning-trap calculations [1] it
was decided to survey the literature on numerical perturbation methods for simple potentials,
with particular emphasis on hypervirial techniques, which one of the authors helped to develop
some years ago [2–4]. A close study of over a hundred publications led to some surprising
and in some ways disappointing results. In several works it is difficult to ascertain the exact
potential or Hamiltonian being treated and sometimes a trial and error approach reveals that the
numerical results are for a potential different from the declared one. It is also clear that there
is a recent tendency to lay great emphasis on very impressive algebraic formalisms which in
application produce numerical results of not equally impressive accuracy; one section of the
literature tends to concentrate on producing lengthy algebraic expressions for the low-order
terms of divergent perturbation series. As opposed to this ‘MAPLE syrup with everything’
approach this paper deals with a few of the points of general interest which arose from our
literature survey and which will be of most value to the many readers interested in numerical
techniques. All the calculations reported were carried out in normal double precision using
appropriate modifications of well known methods of perturbation theory. To check the energy
levels predicted by our perturbation calculations we used the accurate finite-difference method
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developed and reported previously [5]. Section 2 gives an outline of the mathematical methods
used and of the modifications made in them to carry out some of the calculations. Sections 3
and 4 deal with the perturbed harmonic oscillator, first with smooth perturbations and then
with singular perturbations. Section 5 discusses radial perturbations of the hydrogen atom
and section 6 treats both symmetric and asymmetric double-well potentials. Sections 7 and 8
apply hypervirial perturbation theory (HVPT) to two special problems which have arisen in
perturbation-theory literature. Section 9 gives a summary of the main conclusions produced
by our study. We give illustrative numerical results throughout, although from time to time
we summarize with a verbal statement the gist of the many hundreds of calculations which
were carried out during our literature survey and which are too numerous to report in full. In
the numerical work the perturbation series were typically taken to order 50 or 60, which is
consistent with the use of ordinary double-precision calculations and is, of course, much less
than the order of several hundreds used in some recent works. This makes the success of the
simple methods which we describe even more interesting. We stress that all the statements
made about numerical or qualitative results throughout this paper can be verified by any reader
who applies the simple methods described. Several technical details are readily to be found
in [1–4]; it is essentially the ideas and methods which we describe, as well as any particular
result, which should be of value to readers who use perturbation techniques.

2. Hypervirial perturbation theory

Since HVPT has been used in many works we give only a brief summary of it here. We start
with the case of a typical Schrödinger equation which incorporates a perturbation parameter λ,
with the potential taking the form of a power series (or a finite polynomial) and the term
V (J )xJ having an associated factor λI (J )

−αD2ψ +
∑

λI (J )V (J )xJψ = Eψ. (1)

For such a potential the expectation values 〈xN 〉 for the exact eigenstates can be shown to obey
the diagonal hypervirial relations (for N = 0, 1, 2, . . .)
1
2αN(N − 1)〈xN−2〉 + (2N + 2)E〈xN 〉 =

∑
(2N + 2 + J )λI (J )V (J )〈xN+J 〉. (2)

A perturbed oscillator problem will have I (2) = 0, and a perturbed Coulomb problem will
have I (−1) = 0, with the other I (J ) being positive integers. In the numerical calculations
we set λ = 1, so that the actual numerical magnitude of each term in V is directly equal to
its coefficient V (J ). We now introduce the perturbation expansions which are traditionally
associated with Rayleigh–Schrödinger perturbation theory

E =
∑

E(M)λM 〈xN 〉 =
∑

X(N,M)λM (3)

and substitute them in (2), taking the coefficients of the λM terms to give a set of hypervirial
recurrence relations which link the X(N,M) coefficients. To make the calculation more
general we allow for the important case in which the potential also includes a centrifugal term
αL(L+1)x−2 for the angular momentumL. This term combines with the kinetic-energy term,
giving the hypervirial recurrence relations

1
2αN [(N2 − 1)− 4L(L + 1)]X(N − 2,M) + (2N + 2)

M∑

0

E(K)X(N,M −K)

=
∑

(2N + 2 + J )V (J )X(N + J,M − I (J )). (4)

These equations involve the E(J ) as well as the X(N,M) and so we need an extra equation
which will express the E(J ) in terms of the X(N,M). Differentiating the potential V with
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respect to λ and equating 〈dV/ dλ〉 to dE/ dλ by the Hellmann–Feynman theorem leads to the
energy equation

(M + 1)E(M + 1) =
∑

I (J )V (J )X(J,M + 1 − I (J )) (5)

on comparing coefficients of λM on both sides of the equality. To apply the equations we
set X(0, 0) = 1, with X(0,M) = 0 for M > 0; this simply asserts that 〈x0〉 = 1 for both
the perturbed and unperturbed states. The E(0) can also be given a precise value, since the
initial problem is an oscillator one (with I (2) = 0) or a Coulomb one (with I (−1) = 0).
ThisE(0) value will depend on the quantum numbers of the unperturbed state and so specifies
the particular unperturbed state which is to be treated. With the values of E(0) and X(0, 0)
known, the X(N, 0) can be calculated by putting the term (2N + 4)V (2)X(N + 2,M) on the
left of (4), so thatX(N +2,M) is found in terms of the already knownX(N,M)with a smaller
N index and a smaller or equal M index.

The energy equation (5) then gives E(1) and permits the X(N, 1) to be found using (4).
Equation (5) then givesE(2) and so on, so that many terms of the series forE and 〈xN 〉 can be
found, without the need to calculate the perturbed wavefunction at each order as in the more
traditional approach to the use of Rayleigh–Schrödinger perturbation theory. The sequence
of partial sums of E(M) or X(N,M) can be stored as the calculation progresses and can be
treated by the Wynn algorithm in the simple multi-purpose form presented previously [6], if,
as often happens, the sequence does not converge. We note that we have not made use of any of
the more recent summation methods which have been proposed (and which will be mentioned
later). To treat isotropic potentials in D dimensions it is only necessary to replace the angular
momentum L in the equations by AM + (D − 3)/2, where AM is the generalized angular
momentum. AM = 0 always refers to fully isotropic states, so, for example, the ground state
in two dimensions requires L = −1/2. As was pointed out long ago [4], by setting α = 0
in the equations it is possible to obtain the first-order JWKB quantities for the problem being
treated; we shall mention such calculations later in this paper. This possibility arises because
the classical time averages of the xN for trapped oscillating particles obey the hypervirial
equation (4) with the α term omitted, and JWKB theory in the first order gives just these time
averages as its estimate of the quantum mechanical 〈xN 〉 [4]. The generalized Wynn algorithm
used [6], although not mentioned in the survey [7], is a flexible triple-purpose one which
can produce the usual Padé approximants, iterated Aitken results or the transformation studied
in [8], by setting an integer parameterK equal to 1, 0 or −1. We note that by settingK to vary at
each stage of a computation it would be possible to study iteratedN -step Padé transformations.
By constructing sequentially the ascending diagonals of the usual lozenge algorithm for the
approximants it is possible to perform a running analysis in which the analysed results can
be displayed alongside the partial sums while the calculation is in progress. A careful study
of the hypervirial equations for particular problems often reveals that to obtain a given order
of the energy series needs a diminishing number of terms X(N,M) as M increases, so that a
triangular (rather than rectangular) array of X(N,M) will suffice. By packing the elements
X(N,M) into a long linear array by means of an indexing algorithm it is then possible to
increase by about 40% the order attainable with a given storage capacity. For example, to find
E(10) for the perturbed potential x2 + λx4, we see from (5) that X(4, 9) would be needed. It
follows from (4) that to find X(4, 9) we need to know X(8, 8), X(12, 7) and so on, down to
X(40, 0). Further, since the 〈xN 〉 for odd N are all zero by symmetry, we only need to use the
N values 0, 2, 4, . . . in (4). We can thus pack the non-zero elements of the X array into about
half the storage space by re-labelling them using the integer indexN/2. The result is a tapering
array with its long edge at the M = 0 end. Various coding formulae can be devised to put
the X(N,M) coefficient into the appropriate location in the close-packed tapered array. The
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various auxiliary techniques described above have been tested during the calculations reported
in this paper; however, it is the numerical results themselves on which we shall concentrate,
together with the insight which they produce for several particular problems.

3. The classical perturbed oscillator problem

The case of an x4 perturbation of the x2 potential has been treated in hundreds of works,
while the cases of the x6 and x8 perturbations have more recently received greater emphasis,
particularly since it has been found that the Padé approximants of even and odd order do not
converge to the same limit when applied to the sequence of partial sums of the x8 energy
series [9, 10]. The formal theory of perturbation series has almost universally been applied to
the λ series arising from the potential x2 + λxJ . In our calculations we partially side-stepped
this by using a combination of renormalization and of variation of the powers of λ attached
to the terms. For example, it turns out to be useful to re-write the potential as follows (for
J = 6, 8)

V (2)x2 + λ2V (J )xJ = βx2 + λ2V (J )xJ − (β − V (Z))λx2 (6)

so that the resulting energy series is an unorthodox series. When this series is treated by
the Wynn–Padé algorithm it gives results which are better than the typical ones used as
representative by the proponents of various more recent summation methods. Most of the
comparative studies tend to use a particular restricted form of a renormalized series, in which
V (J ) is prefixed by λ rather than λ2 and β is found by a fixed algebraic prescription. By
using λ2 and varying β empirically to obtain an optimum result we are able to do much better
than previous studies would suggest for the usually treated one-dimensional problem. We find
that an effective way to judge optimality is to vary the renormalization parameter so as to
obtain the maximum number of stable digits in the Wynn-analysed sequence of partial sums;
this is analogous to the traditional approach of estimating the sum of an asymptotic series
by taking the value at the smallest term in the series. This approach requires careful (often
interactive) computing of the kind which is easily carried out on a microcomputer. It is perhaps
the modern tendency to go for quick results via fully automatic programs which partly explains
the failure of many authors to get the most out of HVPT. If we move on from the two most
commonly treated cases L = −1 and 0 and treat the perturbed oscillator states with L = 1, 2,
etc, the situation improves even further, since we can then move the origin from r = 0 to the
r value corresponding to the minimum of the effective potential V (r) + αL(L + 1)r−2. We
then expand V in a Taylor series about the minimum and carry out a perturbation calculation
in which the quadratic term is the unperturbed oscillator term and the term V (J )xJ has the
index I (J ) = J − 2 (i.e. λV (3)x3 + λ2V (4)x4 + · · ·). A detailed account of this approach is
given in the recent work in which it was applied to treat a Penning-trap problem [1]; we note
that the approach has the interesting feature of transforming a perturbed Coulomb problem
into a perturbed oscillator problem (see also section 7). The assignment I (J ) = J − 2 for the
powers of x goes back at least as far as the remarkable work of Sprandel and Kern [11], who
explicitly solved the equations for the perturbed wavefunctions of various orders using a finite-
difference method. We have confirmed their results quickly using the hypervirial approach,
which of course does not need the perturbed wavefunctions. To illustrate the effect of the
simple modifications which we describe here we quote some results for the ground state of
the potential x2 + λxJ , using the particular cases of the work [12], which compares the Padé
summation method with some more recent summation methods. In [12] the order 45 was
used, at which point the summation results appear to be beginning to lose stability. Going
to order 50 with our calculation we found the following results, using the self-explanatory
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notation E(V (2), λ, J ): E(1, 0.2, 6) = 1.173 889 345, E(1, 0.02, 8) = 1.064 2078. Both of
these results compare well with the best results of [12]; we even obtain the very respectable
results E(0, 1, 6) = 1.144 8025 and E(0, 1, 8) = 1.225 81. For the case J = 4, of course, the
hypervirial method gives results of very high accuracy. As would be expected, our results for
J = 4 are much more accurate than those published in the 1960s and 1970s; they also turn
out to be more accurate, at least for some λ values, than those appearing in some more recent
works (e.g. [13–15]). For example, for the case α = 1/2 and V = x2/2 + λx4, [14] gives
a ground-state best estimate (using a summation method for 100 terms) of 60.099 729 606
at λ = 106, while our HVPT and finite-difference calculations give 66.800 062 59. For the
same problem with λ = 1, [15] gives a first-excited-state energy of 2.737 91 while HVPT
gives 2.737 892 263 0085. For the Hamiltonian with α = 1/2 and V = x2/2 + 100x6 [16]
gives a ground-state energy of 2.1925 while HVPT gives 2.193 3398. Our results for the case
α = 1/2 and V = x2/2 + λxJ (J = 6, 8) are of about the same numerical accuracy as the
quadratic Padé approximant results of [17] based on 300 or so terms of the traditional energy
perturbation series, for λ values of 0.1 and 0.01 used as examples in [17]. Including the
angular-momentum term and applying the hypervirial method with the origin at the minimum
of the effective potential produces the results shown in table 1. No renormalization was
used; we simply applied the standard Wynn algorithm to the partial sums based on using as the
unperturbed oscillator the ‘natural’ quadratic term in the Taylor expansion about the minimum.
By contrast, the use of a more traditional form of the renormalized perturbation approach with
the origin at r = 0 and including the appropriate L value in the hypervirial equations gives
markedly less accurate energy values except for the specially favourable case J = 4. To the
best of our knowledge, almost all theoretical analyses of the perturbation series have been
for the case L = −1 and for a factor λ attached to the perturbing term; our results suggest
some more promising avenues for a more formal analysis. It might be possible to perform
an extrapolation in L which would derive the results for the standard cases L = 0 and −1
starting from the better results obtainable for higher values of L. For the special case of J = 4
we undertook an investigation of the way in which the lowest order JWKB results approach
the quantum mechanical results as the state number n increases; we took the case of the pure
x4 potential, since this can be treated quite easily using the renormalization approach. The
folk theorem that the JWKB results tend to the quantum results for n → ∞ turned out to
need slight modification. The 〈x6〉 values from the JWKB method were found to be lower
than the quantum ones, with a difference which tends to a constant value of about 0.335 99,
while the higher 〈xN 〉 have an increasing error as n increases. Accordingly, we found that the
correct statement of the link between the two methods is that lowest order JWKB results have
a fractional error which varies as n−2 as n → ∞. This investigation is possible because the
HVPT with α = 0 is equivalent to the use of the lowest-order JWKB theory [4] and is much
speedier than traditional approaches using integrals for the favourable case of x4 perturbations.
Fernandez [18] has extended the work of [4] to deal with higher orders of JWKB theory. We
show some typical results in table 2 to indicate the particular efficiency of HVPT for quartic
perturbations.

4. Various single minimum potentials

The perturbed potential V (2)x2 + λx−J has a single minimum which can be used as the
origin for the hypervirial perturbation approach. This gives what is usually called the large-
coupling expansion for this singular potential problem. For λ → 0 it has been shown that
the shift of the eigenvalue from its unperturbed value varies as λA where A = (J − 2)−1

for J > 3 [19]. The special case J = 2 corresponds to the use of an angular-momentum
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Table 1. Some results for the xJ perturbed oscillator (J = 6, 8, 10) H = −D2 + L(L + 1)r−2 +
r2 + rJ . Perturbation order 60. I (J ) = 2.

J L E

6 1 9.455 535 286
6 2 14.584 132 945 7
6 3 20.338 610 333 013
8 1 10.311 312 3
8 2 16.202 827 935
8 3 22.959 396 724 18

10 1 11.011 573 8
10 2 17.491 751 74
10 3 25.017 602 225 9

Table 2. Some results for the quantum and JWKB approaches to the Hamiltonian −D2 + x4.
I (4) = 1 for these calculations. All results were obtained to 16 digits but the truncated values
shown suffice to show the effects described in the text. The JWKB result for each case is below
the quantum one, disregarding any common digits shared by both results.

n 〈x2〉 〈x6〉 〈x8〉
20 7.965 923 2944 1452.864 125 26 22 008.152

8976 491 52 813 080 21 990.134
40 12.592 993 5330 5738.940 118 32 137 370.522

832 815 60 412 718 42.038
60 16.478 698 0356 12 858.785 367 89 402 735.699

20 498 44 937 736 698.426
80 19.948 710 1395 22 812.399 871 6 864 909.291

060 553 0638 814 864.169
100 23.138 809 7258 33 599.783 629 4 1565 551.401

66 902 4476 391 499.064

term and thus allows the method to be applied to many radial potential problems which have
been treated in the literature. For the case α = 1/2 and V = L(L + 1)/(2r2) −20.8r−0.8,
with L = 3, [20] and [21] give the ground-state energies −0.201 91 and −0.201 913 6566,
respectively, while our HVPT and finite-difference methods give −0.201 913 669 032. For
the case α = 1 and V = x2 + 10x−2.5, [22] gives a best ground-state energy (an upper
bound) of 7.735 136 while HVPT based on the minimum of V gives 7.735 111 1035. For
α = 1 and V = x2 + 4x−4, [23] gives the best extrapolated ground-state energy of 5.559 083
while HVPT centred on the minimum of V gives 5.559 082 869. For the case α = 1/2 and
V = r2/2 + 500r3, [24] gives the ground-state energy 33.316 76 while HVPT based on the
minimum of V gives 33.316 761 240 9378. For the Kratzer–Fues potential 25r−2 − 10r−1,
with α = 1/2 [25] our HVPT calculations centred on the potential minimum give the
correct analytical ground-state energy −0.868 225 031 212 to 12 decimal places. In [26] an
r−2 term was added to the perturbing term λx−4; our HVPT calculations at the minimum
gave most of the results of table 1 of [26] to several more digits and revealed that the later
digits of the energies quoted in [26] are incorrect. For example, the ground-state energy for
V = r2+10r−4+2r−2 is given as 7.240 710 184 39 in [26], while HVPT at the minimum and the
finite-difference calculation agree on the value 7.223 520 3931. Several of the original results
in the literature were obtained using 1/N perturbation theory, which appears to involve a much
more complicated and less accurate formalism than that of the ‘direct’ attack on the problem
which we have employed here. As an illustration of the method we show in table 3 some
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Table 3. The lowest two HVPT energies forH = −D2 + xN +λx−J , using 50 terms of the energy
series plus a Wynn analysis. Note that the order of the levels as a function of J changes as λ
increases.

λ N J E1 E2

0.1 2 4 3.575 552 7.766 30
1 2 4 4.494 177 98 8.845 673 1

10 2 4 6.606 622 512 02 11.137 508 255
0.1 2 6 3.915 665 8.274 636
1 2 6 4.659 939 97 9.206 193 5

10 2 6 6.003 209 028 90 10.773 338 296
0.1 4 4 4.891 303 13.779 75
1 4 4 6.838 648 94 16.903 248 1

10 4 4 12.176 953 910 64 24.219 553 274 02
0.1 4 6 5.682 93 15.492 7
1 4 6 7.511 347 32 18.587 429

10 4 6 11.418 705 671 2 24.367 080 418 1

results for the singular perturbation problem with various J values and for the unperturbed
potentials x2 and x4. As a further example, we note that HVPT gives the lowest two levels
−97.539 755 610 and −27.438 632 899 for the Lennard-Jones potential 625(r−12 − r−6) with
α = 1.

5. The perturbed hydrogen-atom problem

The perturbed hydrogen Hamiltonian − 1
2D

2 − Zr−1 + λV (1)r + λV (2)r2 has been treated
by many authors. For the case in which V (1) = 0 and V (2) = γ 2/12 it gives a good
estimate of the 1s energy of the hydrogen atom perturbed by the term 1

8γ
2(x2 + y2), the

quadratic Zeeman effect [27]. The so-called spherical Stark effect problem, with V (1) small
and V (2) = 0 has been treated in several works. To apply the hypervirial method to the
problem involves careful sequencing of the equations. The coefficients X(−1,M) have to
be worked out first at each order M , to permit the X(N,M) with N > 0 to be computed.
To apply a renormalizing approach we introduce a reference nuclear charge Z0 and split
−Zr−1 into −Z0r

−1 + λ(Z0 − Z)r−1. Varying Z0 then produces an energy series in which
Z0 controls the rate of decrease of the early terms in the series as well as the number of
digits accuracy which is observed when the Wynn algorithm is applied to the partial sums.
Results for the case of the spherical Stark effect have been found using a range of perturbation
techniques [28–30]; we were able to obtain much more accurate results for almost every
reported energy level given in these works. For example, for the case α = 1/2 and the potential
V = −r−1 + 4r , [28] and [29] give the ground-state energy values 2.795 598 and 2.796 0028,
respectively. The HVPT calculation with Z0 = 4 gave the energy 2.795 751 283. For the
‘Airy Hamiltonian’ − 1

2∇2 + r of [30] we found the 1s, 2p and 3d levels to have the respective
energies 1.855 757 09, 2.667 829 48 and 3.371 784 49; these values are more accurate than both
the reported perturbation results and the cited ‘exact’ comparison energies in [30]. Results for
the Zeeman problem were given in [27]. We note that the choice I (1) = I (2) = 1 proved to
be satisfactory in our numerical calculations and turns out to be an important feature of the
HVPT approach to the special case treated in section 7, where we give some more numerical
results.
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6. The double-well averaging effect

Careful examination of the symmetric double-well perturbation problems treated in the
literature reveals several of them to be such that the wells are either so deep that no even–odd
splitting is present at a double-precision level of accuracy or so shallow that (although they are
used to set out advanced techniques) they can in fact be handled by the simple renormalized
perturbation theory based on the origin x = 0. For the first case (deep wells) it suffices to take
the origin at the right (or left) hand minimum and apply HVPT based on the Taylor expansion
of the potential about that origin. This quickly gives energy levels of double precision. For
example, taking the potential −x2 + V (4)x4 with V (4) equal to 0.02 and 1, respectively,
gives the hypervirial ground-state energies −11.106 472 413 902 15 (origin at minimum) and
0.657 653 0051 (origin at x = 0). For the potential −25x2 + 0.5x4, with a deep potential
well, treated in [31], the states 38 and 39 were found to be degenerate by a Rayleigh–Ritz
calculation, with a common energy of −130.556 400 499. The HVPT method with origin at
the right-hand minimum quickly gives the energy to be 130.556 400 498 4943. Many numerical
trials have shown that the HVPT results contain internal evidence of the presence or absence of
even–odd splitting for such symmetric double-well problems. Quick convergence to all digits
shows that the splitting is in effect zero at the precision used. Slower convergence to a limited
number of digits indicates the presence of a splitting, with the computed HVPT energy being
the accurate arithmetic mean of the even and odd energies. This averaging effect is shown
in table 4 and has been checked to hold for various published double-well calculations. For
the case of the potential −x2 + 0.03x4 [32] we found (using HVPT) the converged energies
−6.9507(297 194) (n = 0) and −4.32(6981) (n = 3), while the very accurate finite-difference
method of [5] shows that even and odd levels have the bracketed digits (318 893), (275 495)
for n = 0 and (7284), (6678) for n = 3. These numerical results illustrate the averaging
effect. Our calculations also showed a similar effect for the potential 200 (3x4 − 6x2 − 1),
α = 1, treated in [33]. In fact, the splitting is so small for the two lowest pairs of levels that
it should not be observable at the level of precision used in [33]; HVPT is able to show that
the numerical results of [33] are in error, while our finite-difference method [5] confirms this
and also the very accurate results of [34]. For example, [33] gives the two lowest levels as
−751.522 3121 and −751.522 3116, while HVPT at the right-hand minimum gives the energy
−751.522 312 3838(413). The finite-difference calculation shows that the two lowest levels
actually have the last three digits (462) and (363). When a small odd-parity term is added
to a symmetric V the result is a dramatic localization of the low-energy levels into either the
left or the right well. It is possible to calculate the probability P(x > 0) by finite-difference
calculations [35] and so to establish the degree of localization of these states. However, once
again HVPT at the appropriate left or right minimum gives its own internal clue by producing
a large or small number of converged digits in the Wynn-analysed energy series. This effect
is also shown in table 4; once again, the HVPT levels are all confirmed by a finite-difference
calculation in the full space.

7. A special perturbed Coulomb problem

The interesting properties of the Hamiltonian

− 1
2D

2 − r−1 + 2λr + 2λ2r2 (7)

have been pointed out previously [36]. The form of the potential is such that bound states
exist for both positive and negative λ. Applying Rayleigh–Schrödinger theory gives an energy
perturbation series which takes the simple form E = − 1

2 + 3λ. This gives the exact energy for
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Table 4. Some energy levels for the double-well Hamiltonian −D2 − x2 + 0.01x4 + λx, using
HVPT at the right (R) or left (L) minimum of V . For the symmetric case λ = 0 the accurate
even- and odd-state energies from finite-difference calculation straddle the HVPT value, with the
varying digits being shown in parentheses. The averaging phenomenon is clearly visible. The loss
of digits in HVPT for the two highest levels indicates that the levels are not perfectly localized.
Finite difference methods [35] give P = 0.999 999 9746 for these states.

λ = 0
Initial digits Even HVPT(R, L) Odd

−23.595 951 394 702 (29) (29) (29)
−20.829 806 394 000 (69) (69) (69)
−18.129 911 166 28 (60) (60) (60)
−15.501 421 612 8 (088) (105) (121)
−12.950 690 513 (3270) (4964) (6660)
−10.485 794 9 (51 879) (64 449) (77 019)
−8.117 45 (292 513) (361 657) (430 801)

λ = 0.001
HVPT(R) HVPT(L)

−23.588 957 072 802 −23.602 945 976 466
−20.822 972 039 181 −20.836 641 030 933
−18.123 248 475 760 −18.136 574 166 004
−15.494 944 807 678 −15.507 898 760 913
−12.944 417 357 451 −12.956 964 055 997
−10.479 748 457 000 −10.491 841 916 766
−8.111 665 064 9 −8.123 242 696 4

λ > 0, but for λ < 0 it is incorrect; a non-analytic term gives an increasing contribution as |λ|
increases. HVPT makes it possible to study the properties of (7) for λ < 0 by combining the
two types of perturbation theory used in this paper. To give a precise example we present the
details for the case λ = −0.03. The first essential step is to find the profile of the potential,
i.e. find the positions of the maxima and minima of V and the values of V and of its second
derivative at those extrema. This then allows a preliminary judgement of whether any potential
wells present in V are likely to be deep enough to have any trapped levels. For λ = −0.03 the
V in (7) has the following profile (using truncated values):

r = 4.84 V = −0.455 maximum

r = 15.51 V = −0.562 V ′′ = 0.0031 minimum.

These numbers suggest that the outer well in the potential V , although it is shallow, should be
able to contain at least one level, while the V value at the maximum appears to be sufficiently
low to ‘strip off’ all the usual hydrogenic levels except the ground state one at −1/2. To carry
out a detailed numerical perturbation calculation we use harmonic oscillator HVPT, together
with the Taylor expansion of V , at the position of the minimum and also a Coulomb HVPT
centred on r = 0. However, for this r = 0 calculation we know that a traditional approach will
give the wrong result − 1

2 + 3λ. Accordingly, we try the approach of ‘changing the powers’;
we replace λ2 attached to r by λ, in order to produce a different series (just as in the oscillator
problems of section 3 we made a change in the opposite direction). Thus to treat the specific
case λ = −0.03 we rewrite the perturbation as −0.06λr + 0.0018λr2, with λ taken as 1 in the
numerical calculation. We can also use the renormalization approach of section 5 by writing the
Coulomb term as −Z0r

−1 + (Z0 −1)λr−1. When we do this the energy series (when used with
the Wynn algorithm) gives a ground-state energy of −0.589 996 7663, showing the presence
of the small non-analytic term which changes the energy from the standard perturbation value



8318 J P Killingbeck et al

of −0.59 exactly. The calculation thus has used perturbation theory to evaluate a non-analytic
perturbation term! Applying oscillator HVPT in the outer well leads to a lowest-energy level
of −0.5348 and a second level of −0.482; the small number of converged digits implies that
the levels are perhaps not strongly localized. However, a checking finite-difference calculation
in the full region r = 0–100 shows that there is indeed a level at −0.534 76 and that it has a 〈r〉
value of 15.31; the minimum of V is at 15.51. Thus the ‘weak’ perturbation with λ = −0.03
has produced three levels (at −0.590, −0.535 and −0.482) close to the unperturbed energy
−0.5. The level nearest to it in energy is thus not the inner one which arises naturally from
it but the outer one which is concentrated in the distant potential well. For smaller values of
|λ| HVPT at the outer minimum gives much sharper results and indicates that the lowest outer
level tends to −1/2 − |λ| as |λ| tends to zero. At λ = −0.01 HVPT gives many levels in the
outer well, the lowest five of them being to 12 or more decimal places.

8. Some multiple-well problems

We may note in passing that the HVPT applied at the minimum of theN th well of the potential
V = cos(|x| 1

2 ) gives many energy levels in that well with double-precision accuracy, since the
barrier between the wells is so thick that each well contains a large number of almost perfectly
localized levels. Nevertheless, the finite-difference method of [5], when carefully applied [37],
is sufficiently robust to find these levels in a full space calculation and to correctly assign them
to their appropriate wells. Rather than using that case as an example we have chosen another
one which has been discussed in the recent literature of perturbation theory. In [38] calculations
were performed for several polynomial radial potentials which have more than one minimum.
As an illustrative example we take the particular case of the Hamiltonian

− 1
2D

2 + 2r−2 − r−1 − 4.743 42r + 10.158 11r2 − 2r3 + 0.1r4. (8)

The profile of the potential function is as follows:

r = 0.759 V = 3.565 V ′′ = 43.412 minimum

r = 4.673 V = 43.131 maximum

r = 10.075 V = −31.763 V ′′ = 21.232 minimum.

In [38] the authors used a fairly complicated approach via 1/N theory in hypervirial form,
whereas we proceed simply and directly by carrying out HVPT at the potential minima. This
means that we use the true potential rather than the modified potential of 1/N theory; however,
we can still interpret meaningfully the criticisms which the authors of [38] make of the work
of [39]. The gist of the criticism is that in the case of potential (8) and of several others
the authors of [39] chose the ‘wrong’ minimum on which to base their calculations and so
obtained energy levels which are ‘seriously in error’. By using HVPT (with our checking finite-
difference method to confirm all the results) we can establish that the results of [39] are in fact
acceptable when they are properly placed in context. HVPT calculations carried out at the outer
minimum give a sequence of oscillator levels. The n = 0 level has E = −28.523 425 470 899
while the n = 8 level has E = 18.973 361 2620. These values are confirmed by a finite-
difference calculation, which also produces 〈r〉 values close to 10. HVPT calculations at the
inner minimum clearly show some local levels, although the convergence is not as good as
for the outer minimum. The inner n = 0 level is 8.516 023 and the n = 2 and 3 values are
17.094 78 and 24.9273. The finite-difference checking calculation confirms these energies to
the decimal places quoted (although it gives many more digits) and gives 〈r〉 values close to
0.8. The E value given by [38] is −28.522 68 and that given by [39] is 8.514 29. Allowing
for the much lower accuracy of the calculations of the two works, it is clear that the result
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of [39] criticized by [38] is in fact a respectable energy level, which, in the context of a full
space calculation, is actually an excited state, while the level given by [38], being in the deeper
well, is an estimate of the ground-state energy. The effects which we have demonstrated here
for one particular case persist for the other polynomial potentials given in [39] for which the
results of [38] and [39] differ. We note that our accurate energies do not agree fully with the
quoted ‘exact supersymmetric energies’ quoted for the various cases which are treated in [39].

9. Summary

In this paper we have presented a selection of the topics and numerical results which resulted
from a study of a large portion of the published literature on perturbation theory. The main
points which we hope to have demonstrated are that the careful use of renormalization and
‘changing the powers’ (together with a style of calculation in which the renormalization
parameters are left freely and empirically variable to maximize the number of stable digits
arising in the Wynn analysis) make it possible to obtain numerical results which are much
better than those which many previous workers have achieved and that HVPT, when combined
with potential profiling, can be a useful diagnostic tool in searching for localized levels in
potentials which contain multiple minima, while for simple single-well potentials it provides
a way to obtain lowest-order JWKB results without the use of integrals. Renormalization
methods are usually of most value when the perturbing potential has only one or at most two
terms in it, since we only use a single renormalizing parameter. We surmise that a more
complicated approach involving a ‘distributed’ renormalization, with each term having a small
subtracted x2 term, might help to improve the results for the HVPT approach at the minimum
of V , where the perturbing V is a power series. Work is currently in progress on this approach.

Although in this paper we have dealt only with the model potentials which typically appear
in theoretical studies, we note that asymmetric well systems appear in the potentials associated
with the HD molecule and the inter-base potentials in DNA [40,41]. We hope that several of the
ideas and numerical results presented here will stimulate further investigations by workers in
the area of perturbation techniques and will also encourage those who use other techniques to
make use of HVPT as a checking calculation when appropriate. As one obvious point we note
that, since we have retained the standard Wynn algorithm throughout and have concentrated
on the generation of the series as the thing to be modified, it might be that the new series
arising from some of the calculations would yield even better results in the hands of experts
in the more recent summation techniques. It is clear that the linkage of perturbation theory
with hypervirial relations which Swenson and Danforth [42] set out long ago has led to many
powerful techniques and still has the potential for further development. As a result of their
large-scale trawl through hundreds of published works the authors would like to make a final
plea to workers who publish tables of numerical results; please take care to show at the head
of each table the full Hamiltonian used, including the kinetic term!

As an extra example, taken from a paper on matrix mechanics which appeared during the
final revision of this paper, we note the case of the potential V = 50 sinh2(x) with α = 1/2.
In [43] the energy of the level n = 5 is given as 61.820, while HVPT centred on x = 0 quickly
gives 61.820 235 107 690 for this energy.
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